TACS University E-learning Webinar Series:

> Fast Analysis for Mining, Mehlich-3, and EPA 200.7

> > LEDYNE VANCED CHEMISTRY

Introduction to the ASXpress Plus

- ICP-OES and ICP-MS Accessory that enables faster sample uptake times and eliminates rinse times to allow more samples to be analyzed per day
- ASXpress has its own software separate from the instrument to specify operating conditions
- Minimal method development is required delete flush and rinse times, adjust sample uptake time

Rapid Sample Introduction System

Valve Pump Module

- Contains metal free multiport valve and inert high speed liquid pump
- Pump is used to quickly load sample loop, reducing uptake time
- Valve allows for simultaneous analysis and rinsing, improving sample through put

Electronics Module

- Handles all Communication to the autosampler and valve pump module
- Programmable to meet user needs
- "Invisible" to ICP software, handles all commands without directly communicating with the analyzer software.

Applications

- Mining Clients require superior accuracy
- Soils Speed is most important
- EPA 200.7 Speed and accuracy must be well balanced

Time Savings

Mining Industry

No promulgated method

Digestions can have final acid concentrations as high as 45%

Speed is important, but accuracy is often more important.

Goal: Demonstrate analysis with and without ASXpress produces similar quality data in a smaller amount of time

Oreas45f – Lateritic Soil from Australia

Digestion:

- 0.5g, 9mL HCl, 3mL HNO
- Heat at 95°C for 2 hours.
- Fill to final volume of 50mL
- Digestion dilution: 100x, 24% Aqua regia

Table 2. Certified Values,	SD's, 95% Con	fidence	and Tolera	ance Limit	s for ORE	AS 45f	
Constituent	Certified	SD	95% Cor Lirr	nfidence nits	95% Tolerance Limits		
	Value		Low	High	Low	High	
Aqua Regia Digestion (sam	ple weights 0.1	5-50g)					
Ba, Barium (ppm)	158	7	155	161	154	162	
<u>Co, Cobalt (ppm)</u>	39.2	3.44	37.9	40.5	38.2	40.3	
Cr, Chromium (ppm)	341	25	332	351	333	349	
Cu, Copper (ppm)	336	16	330	342	327	345	
Fe, Iron (wt.%)	13.69	0.560	13.48	13.90	13.40	13.97	
<u>Mn, Manganese (wt.%)</u>	0.015	0.002	0.014	0.015	0.014	0.015	
Ni, Nickel (ppm)	192	14	186	198	186	198	
<u>S, Sulphur (wt.%)</u>	0.027	0.004	0.025	0.028	0.026	0.027	
Sc, Scandium (ppm)	31.4	2.26	30.6	32.3	30.3	32.5	
<u>Sr, Strontium (ppm)</u>	13.2	1.11	12.7	13.6	12.7	13.7	
V, Vanadium (ppm)	217	11	213	221	213	221	
Zn, Zinc (ppm)	22.2	3.7	20.7	23.7	21.3	23.1	

Copyright © 2018 (ORE Research & Exploration Pty Ltd). All Rights Reserved.

Oreas 45f Analysis – 10 aliquots

Second Source Calibration Verification

Improve Throughput, Maintain Accuracy

- Samples can be challenging with high acid content and high TDS
- Methods must be tailored to meet the needs of the individual lab
- Accuracy is Key

- ASXpress Plus maintains or improves data quality for ICP analysis
- RSD's are consistent with standard analysis
- Washout is improved
- Instrument drift is minimized

Time per sample reduced by <u>70%</u> An 8 hour shift allows for: 257 samples by standard method <u>OR</u> 872 samples with ASXpress Plus

615 more Samples!

Mehlich-3 Extracts

No promulgated method

Soil samples collected from farms are extracted with a solution appropriate to their soil type

Results are compared to a range to determine fertilizer application.

Speed is much more important than accuracy.

Analysis 240 aliquots

Element	mg/L
Aluminum	50.0
Boron	5.0
Calcium	50.0
Copper	0.5
Iron	5.0
Potassium	20.0
Magnesium	50.0
Manganese	2.0
Sodium	20.0
Phosphorus	5.0
Sulfur	2.0
Zinc	2.0

10 Analyses sample matrix spike

Importance of Rinse

ASX Standard Run - No Rinse

Every Second Counts!

- Time is limited during the busy season
- Labs must adapt prep to match local soil conditions
- Turnaround time is critical!

FD CHEMISTRY

- ASXpress Plus maintains or improves data quality for ICP analysis
- Uptake time is reduced by 47%
- Carryover is improved without sacrificing time
- Performance is maintained over many samples

Time per sample reduced by <u>30%</u> An 8 hour shift allows for: 960 samples by standard method <u>OR</u> 1391 samples with ASXpress Plus

431 more Samples!

EPA 200.7

Drinking water and Wastewater Samples

QC requirements strictly regulated

Balance accuracy and speed

Instrument Settings

Parameter	Setting Standard Run	Setting Xpress Run
Pump Speed	1.0mL/min	1.5mL/min
Read delay	30 secs	15 secs
Flush speed	3.0mL/min	-
Flush time	30 secs	-
Rinse time	SmartRinse®	-
Replicates	3	

Time Measurement

Batch

- Blank
- LCS
- Stream
- Stream MS
- Stream MSD
- Influent
- Influent MS
- Influent MSD

Standard ASXpress

Instrument Performance Check (IPC) RSD

Instrument QC Recoveries

		1640a			1643f	
	True Value (μg/L)	Measured (µg/L)	% Recovery	True Value (μg/L)	Measured (µg/L)	% Recovery
Ag	8.081	7.414	91.7	0.9606	1.001	104.2
Al	53.0	51.0	96.3	132.5	129.8	97.0
As	8.075	8.101	100.3	56.85	62.56	109.0
В	303.1	314.1	103.6	150.8	160.6	105.4
Ва	151.8	151.3	99.7	513.1	525.6	101.4
Ве	3.026	3.078	101.7	13.53	14.09	103.1
Ca	5,615	5,563	99.1	29,140	28,859	98.1
Cd	3.992	3.694	92.5	5.83	6.27	106.1
Со	20.24	19.08	94.2	25.05	24.16	95.5
Cr	40.54	39.20	96.7	18.32	19.11	103.3
Cu	85.75	83.47	97.3	21.44	21.10	97.4
Fe	36.8	38.4	104.3	92.51	98.56	105.5
К	579.9	596	102.8	1,913.3	2,079	107.6
Li	-	-	-	16.42	17.75	107.0
Mg	1,058.6	1,072	101.3	7,380	7,594	101.9
Mn	40.39	40.68	100.7	36.77	37.73	101.6
Мо	45.6	44.7	98.0	114.2	121.3	105.2
Na	3,137	3,183	101.5	18,640	19,763	105.0
Ni	25.32	23.88	94.3	59.2	57.0	95.2
Pb	12.101	12.693	104.9	18.303	19.987	108.1
Sb	5.105	4.782	93.7	54.90	55.38	99.9
Se	20.13	18.53	92.0	-	-	-
SiO ₂	5,210	4,757	91.3	-	-	-
Sr	126.03	125.61	99.7	311	327	104.2
TI	-	-	-	6.823	6.644	96.4
V	15.05	14.590	96.9	35.71	37.98	105.0
Zn	55.64	54.461	97.9	73.7	77.3	103.9

NIST Certified Standards

- 1640a Trace
 Elements in
 Natural Water
- 1643f- Trace
 Elements in
 Water

	Ag /	AS E	8	sa l	Be (Cd	Co C	r (u I	Vin I	Ni I	b S	ie 1	1		Zr
LCS	95%	98%	103%	103%	105%	96%	97%	101%	99%	101%	99%	101%	94%	100%	104%	
Stream MS	92%	100%	99%	98%	102%	93%	96%	99%	99%	94%	96%	98%	87%	97%	104%	
Stream MSD	95%	105%	102%	100%	103%	95%	97%	101%	102%	98%	98%	99%	90%	98%	106%	
Influent MS	103%	113%	113%	101%	93%	91%	93%	98%	88%	99%	90%	93%	71%	83%	106%	
Influent MSD	101%	110%	104%	99%	94%	89%	92%	91%	86%	92%	88%	91%	71%	83%	104%	
Stream spike	20/	50/				201	201	20/	20/	20/	20/	40/	40/	40/	20/	
RPD	3%	5%	2%	1%	1%	2%	2%	2%	2%	2%	2%	1%	4%	1%	Ζ70	
RPD Inf spike RPD	3%	5% 3%	2% 4%	1% 2%	1% 0%	2%	2%	2% 4%	2%	2% 4%	2%	1% 2%	4% 0%	1% 0%	2%	
RPD Inf spike RPD 120%	3%	3%	2% 4%	1% 2%	1% 0%	2%	2%	4%	2%	4%	2%	2%	4% 0%	0%	2%	
RPD Inf spike RPD 120% 110%	3%	3%	2% 4%	2%	1% 0%	2%	2%	4%	2%	4%	2%	2%	4% 0%	0%	2%	
RPD Inf spike RPD 120%	3%	3%	2%	2%	1%	2%	2%	4%	2%	4%	2%	2%	4% 0%	0%	2%	
RPD 110%	3%	3%	2% 4%	2%	1%	2%	2%	4%	2%	4%	2%	2%	4% <u>0%</u>	0%	2%	
RPD 120% 120% 110% 100% 90% 80%	3%	3%	2%	2%	1%	2%	2%	4%	2%	4%	2%	2%	4%	0%	2%	
RPD 120%	3%	3%	2%	1%		2%	2%	4%	2%	4%	2%	2%	4%	0%	2%	
RPD 110% 110% 100% 90% 90% 70% 60%	3%	3%	2%	1%	1%	2%	2%	2%	1%	4%	2%	2%	0%	0%	2%	

Sample Spike Recoveries

Satisfy Stringent Requirments, Improve your Workflow

- EPA tightly regulates high standards of performance
- Sample volume is high
- Price per sample is low

- ASXpress Plus maintains or improves data quality for ICP analysis
- QCS, IPCs and Matrix Spikes all pass
- Instrument drift is minimized allowing more samples between calibrations

2.7X as

many

Samples!

Time per sample reduced by <u>62%</u> An 8 hour shift allows for: 113 samples by standard method <u>OR</u> 303 samples with ASXpress Plus

• • • • • • • • • • •

ASXpress Plus Rapid Sample Introduction System

Accurate	Maintain the highest standard of performance for your ICP/ICP-MS
Fast	Decrease sample to sample times by as much as 70%
Clean	Reduce carryover between samples by rinsing during analysis
More	Run more samples per day and more samples per calibration

Application Notes:

http://www.teledynecetac.com/resourcecenter/application-technical-notes

Any Questions?

